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Abstract.  The Generalized Integral Transform Technique (GITT) is utilized in the hybrid
numerical-analytical solution of the Reynolds-averaged boundary layer equations, for
developing turbulent flow inside a parallel-plates channel. An algebraic turbulence model, a
modified version of the local Van Driest effective viscosity model, is employed in modelling
the turbulent diffusivity. The streamfunction-only formulation is utilized, being solved by an
eigenfunctions expansion obtained from the homogeneous bi-harmonic problem, associated to
the original problem. Therefore, following the ideas in previous contributions to GITT,
numerical results for different Reynolds number are obtained, both for illustrating the
convergence characteristics of the integral transform approach, and for critical comparisons
with previously reported results through different models and numerical schemes.
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1. INTRODUCTION

The analysis of a developing turbulent flow inside parallel-plates channels finds
numerous applications in the engineering practice, starting from the primary need of
estimating pressure drops and, consequently, designing pumping power requirements. Such
geometry is fundamental in the design of plate heat exchanger, in some nuclear reactor
configurations, in air conditioning applications, in the cooling of microelectronic circuit
boards, and as a limiting case of annular passage.

Despite the quite recent and progressive developments on the direct simulation of
turbulence, the concept of Reynolds averaging, and associated turbulence modelling for
closure, remains a more practical tool in engineering simulations, Wilcox (1984). The well-



known Van Driest model offers the basis for most of the algebraic models utilized in the
literature, including the quite successful variations proposed by Herring and Mellor (1968)
and Cebeci and Smith (1974). These applications were initially direct to be employed in
conjunction with boundary layer formulations of governing flow equations. Later on, based
on the modifications introduced by Hirst and Coles (1968), algebraic models were utilized in
association with Reynolds-averaged Navier-Stokes equations, within an elliptical formulation,
Richman and Azad (1973) and Taylor et al. (1977).

The so-called Generalized Integral Transform Technique is a spectral-type approach,
based on eigenfunction expansions that incorporate some ingredients of a classical analytical
approach with the aid of symbolic algebraic manipulation packages, Cotta (1993) and Cotta
and Mikhailov (1997). Due to its inherently hybrid nature, this technique presents some
interesting features such as the automatic and straightforward global error control procedure,
which make it particularly suitable for benchmarking purposes; as well as only a mild
increase in overall computational effort with an increase number of independent variables.
Following the successful implementations of this approach in the solution of the equations for
laminar flow situations, the developing turbulent flow between two parallel-plates was
recently studied through the GITT, (Pimentel and Cotta, 1998), employing a boundary layer
formulation and the algebraic turbulence model proposed in Cebeci and Smith (1974).

As a natural sequence to the contribution to the study of turbulent channel flow, the
present work progress towards the integral transform solution of the Reynolds-averaged
boundary layer equations, for a parallel-plates configuration, as in Pimentel and Cotta (1998).
However, another algebraic turbulence model is utilized, that one employed by Richman and
Azad (1973) and Taylor at al. (1977), following both the finite differences and finite elements
methods. The convergence characteristics of the approach are illustrated for different values
of Reynolds number, and critical comparisons against previously reported simulations are
performed, in an attempt to elucidate merits and deficiencies of the modeling adopted.

2. PROBLEM FORMULATION

We consider the incompressible two-dimensional turbulent flow of a Newtonian fluid
with constant physical properties developing between parallel-plates, as depicted in "Fig. 1".
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Figure 1. Geometry, coordinate system, inlet and boundary conditions

The fluid enters the channel under a uniform and parallel flow, and the laminar-turbulent
transition is assumed to occur right at the duct entrance. The average flow is considered to be
in steady state and the concept of turbulent viscosity is adopted.

After an application of the Boussinesq hypothesis, and employing the following
dimensionless quantities:
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the continuity and averaged boundary layer Reynolds equations are written, in the primitive
variable formulation and in dimensionless form, as:
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subjected to the inlet and boundary conditions, respectively:
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It has been demonstrated in previous contributions on the integral transform method that
the streamfunction-only formulation for two-dimensional flow, offers some advantages over
the more usual primitive variables version, including the automatic satisfaction of the
continuity equation and elimination of the pressure gradients. Therefore, "Eqs. (1-9)" are now
rewritten in the streamfunction-only formulation, starting from its definition:
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which yields, after the appropriate manipulation with "Eqs. (2-3)", the governing equation for
the dimensionless streamfunction:
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subjected to the inlet and boundary conditions, respectively:
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2.1 Turbulence Model

According to Richman e Azad (1973), among the various models available for the
effective viscosity in turbulent flows the Van Driest model offers the best compromise
between simplicity and generality. The most important advantages are in avoiding any need
for evaluating velocity gradients and artificially defined boundary layer thickness, within the
turbulence model itself. The model proposed by Richman and Azad (1973), and utilized by
Taylor et al. (1977) in conjunction with the full Navier-Stokes formulation for circular tubes,
is written in dimensionless form as:
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where:

L dimensionless hydrodynamic development length
41,0=Κ von Karman's constant

26A = damping constant of the viscous sublayer
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( ) τ
+ ⋅−⋅= u y1 ReY turbulent Reynolds number, in terms of the dimensionless

parameters

It can be noticed that this model is indeed quite simple, representing a truncation of the
original Van Driest model at ( ) 158,0y1 =− , yielding an uniform turbulent viscosity in the

region ( ) 1y1158,0 ≤−≤ , and allowing for the dependence on the turbulent Reynolds number
based on the local friction velocity, so as to account for the nonlinear pressure gradient.



3. SOLUTION METHODOLOGY

Following the ideas in the GITT, the boundary conditions in the direction to be integral
transformed are, first of all, made homogeneous. For this purpose, a filtering solution is
proposed, in this case the fully developed flow profile, ( )y∞Ψ , which also analytically
recovers the original solution for large x, in the form:
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Then, "Eq. (12)" is rewritten for the filtered potential, )y,x( Φ , as:
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while the initial and boundary conditions, "Eqs. (13-18)", are similarly filtered, to provide:
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The filtered system, "Eqs. (22-28)", is now in the appropriate form for integral
transformation in the transversal direction, y, after extraction of the fully developed solution.
The eigenvalue problem, employed as auxiliary problem for integral transformation, is
obtained of a homogeneous version of the original problem, "Eq. (12)". It is presented in the
work of Perez-Guerrero and Cotta (1995), and given by:
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This problem has the following analytical solution:

( )
)(Senh

)y (Senh

)(Sen

y) Sen(
yY

~

i

i

i

i
i µ

µ−
µ

µ= ; i = 1,2,3... (34)



while the associated eigenvalues, s'iµ , are evaluated from the transcendental equation:

)(Tan)(Tanh ii µ=µ (35)

and the normalization integral gives Ni = 1.
The eigenvalue problem above allows the definition of the integral transform pair:
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where the proposed eigenfunction expansion appears in the inversion formula, "Eq. (36)", in
terms of the transformed potentials, )x(iΦ .

"Equation (22)" is now operated on with ∫ 1 

0 i dy )y(Y
~

 to yield, after employing the

inversion formula, "Eq. (36)", on terms with differentiation in x:
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In compact form, the above equation can be rewritten as:
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where the two coefficients are defined as:
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The inlet condition is similarly integral transformed, to yield:

1y0   ,0x ≤≤=

[ ] dy(y)yY
~

)0(
1

0
ii ∫ ∞Ψ−=Φ i = 1, 2, 3, ... (48)

0
dx

d

0x

i =Φ

=

i = 1, 2, 3, ... (49)

The integral transformation process shall then eliminate the transversal coordinate, y, and
offers an ordinary differential system for the transformed potentials. The infinity system,
"Eqs. (39-49)", is now truncated to a sufficiently large finite order, N, in order to achieve
numerical results to within an user prescribed accuracy target, through well-established
subroutines for initial value problems, such as routine DIVPAG (IMSL, 1987). Once these
quantities have been numerically evaluated for any axial position, x, the streamfunction, the
velocity components and the friction factor are recovered analytically, by recalling their
definitions and the inversion formula.

4. RESULTS AND DISCUSSION

The computational procedure was implemented in a Fortran code and executed on
microcomputer Pentium II of 300 MHz. A relative error target of 10-5 (five significant digits
precision) was prescribed in the call of subroutine DIVPAG, and the fully converged results
are expected to be correct to within 1±  in the last digit provided.

Numerical results for the streamfunction and longitudinal velocity component are now
reported, for different values of the Reynolds number, aimed at illustrating the convergence
characteristics of the proposed eigenfunction expansion, and allowing for critical comparisons
with previously reported numerical and experimental findings.

"Table 1" illustrate the convergence behavior of the streamfunction profiles at selected
axial positions (x*/Dh = 10 and 25) in units of hydraulic diameter, for Re = 3,5 x 104. The
excellent convergence rates are clearly observable from this set of results, with full
convergence to three or four digits at quite low truncation orders.

Table 1. Convergence behavior of the streamfunction profiles, ( )y,xΨ ,
at positions x*/Dh = 10 and 25  (Re = 3,5 x 104)

x*/Dh = 10 x*/Dh = 25
y  |  N 5 40 80 100 5 40 80 100

0,1 0,1106 0,1101 0,1101 0,1101 0,1129 0,1128 0,1127 0,1128
0,3 0,3301 0,3286 0,3286 0,3286 0,3359 0,3355 0,3355 0,3355
0,5 0,5438 0,5417 0,5416 0,5416 0,5503 0,5499 0,5498 0,5498
0,7 0,7460 0,7439 0,7437 0,7437 0,7504 0,7500 0,7499 0,7500
0,9 0,9290 0,9279 0,9277 0,9277 0,9300 0,9298 0,9298 0,9298
0,95 0,9695 0,9689 0,9687 0,9687 0,9698 0,9697 0,9697 0,9697
0,99 0,9968 0,9968 0,9967 0,9967 0,9968 0,9968 0,9968 0,9968

"Table 2" complement such observation, now for the longitudinal velocity component. As
expected, as the fully developed region is approached, the convergence progressively
improves, due to the filtering effect introduced by the fully developed analytical solution. It



may be observed that convergence in the third digit is attained for a truncation order of N = 40
at position near the channel inlet, with a clear slower convergence rate near the wall.

Table 2. Convergence behavior of the longitudinal velocity component, ( )y,xU ,
at positions x*/Dh = 10 and 25  (Re = 3,5 x 104)

x*/Dh = 10 x*/Dh = 25
y  |  N 5 40 80 100 5 40 80 100

0,0 1,106 1,101 1,101 1,102 1,130 1,129 1,129 1,129
0,1 1,105 1,099 1,099 1,100 1,127 1,125 1,125 1,125
0,3 1,087 1,083 1,083 1,083 1,098 1,098 1,097 1,097
0,5 1,046 1,044 1,043 1,043 1,041 1,041 1,041 1,041
0,7 0,9694 0,9725 0,9722 0,9720 0,9545 0,9553 0,9554 0,9553
0,9 0,8446 0,8526 0,8532 0,8532 0,8289 0,8302 0,8305 0,8304
0,95 0,7638 0,7765 0,7779 0,7782 0,7539 0,7555 0,7558 0,7558
0,99 0,5165 0,5274 0,5338 0,5353 0,5142 0,5153 0,5161 0,5162

"Table 3" presents the convergence for the longitudinal velocity component at the
channel centerline, for different positions x*/Dh and different Reynolds number, Re = 3,5x104

and Re = 5,0x104. These results reconfirm the excellent convergence characteristics, with full
convergence to three digits in all cases, for N < 40. It is shown that the system truncation
order N = 5 can represent satisfactory the fully converged results. In addition, the increase in
Reynolds number does not appear to affect convergence rates significantly, in light of the
variable turbulent viscosity behavior, which to a certain extent counterbalances the increased
importance of the inertial terms.

Table 3 - Convergence behavior of the centerline longitudinal velocity, ( )0,xU , at
different positions along the channel and different Reynolds number

Re = 3,5 x 104 Re = 5,0 x 104

x*/Dh | N 5 40 80 100 5 40 80 100
5 1,069 1,066 1,066 1,067 1,065 1,061 1,061 1,061

10 1,106 1,101 1,101 1,102 1,101 1,095 1,095 1.095
15 1,122 1,118 1,118 1,118 1,116 1,112 1,112 1,112
20 1,128 1,125 1,125 1,125 1,122 1,120 1,119 1,119
25 1,130 1,129 1,129 1,129 1,125 1,123 1,123 1,123
30 1,131 1,130 1,130 1,130 1,126 1,125 1,125 1,125
40 1,132 1,131 1,131 1,132 1,126 1,126 1,126 1,126
50 1,132 1,132 1,132 1,132 1,127 1,127 1,127 1,127

"Figure 1.a" brings a comparison of the present integral transform results and the
experimental results of Byrne et al. (1969-70), for the longitudinal velocity component
profiles at different axial positions and Re = 3,5 x 104. Also, some samples results from
previous numerical works are shown, such as the integral transform implementation in
Pimentel and Cotta (1998) and the finite volume solution with k-ε model proposed in Zaparoli
(1989). "Figure 1.b" shows a comparison among the present integral transform results from
Pimentel and Cotta (1998) and the experimental results of Dean (1972), for the longitudinal
velocity component profiles. The value of Re = 5,0 x 104 was employed in these comparisons,
and the velocity profiles are shown for different axial distances.
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Figure 1.a, b - Development of longitudinal velocity component along channel and
comparison against experimental and numerical results.

The overall agreement is quite reasonable, with some noticeable deviations of the present
results from the experimental findings, at the wall region, for lower values of x*/Dh, but
improving for larger values of the longitudinal position. Also, within an intermediate range,
the centerline velocity appears less adherent to the experiments, which might be an indication
of a turbulence model limitation, since the more refined modeling in Pimentel and Cotta
(1998) and Zaparoli (1989) presents a more consistent behavior.

To better demonstrate the limitation on the turbulence model employed here, "Figs 2.a, b"
show the evolution of the centerline longitudinal velocity component along the channel
dimensionless coordinate, x*/Dh, respectively, for Re = 3,5 x 104 and Re = 5,0 x 104. Besides
the experimental results of Byrne et al. (1969-70) and Dean (1972), alternative simulations
with more involved turbulence models are presented, extracted from Pimentel and Cotta
(1998), Bradshaw et al. (1973) and Emery and Gessner (1976).
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5. CONCLUSIONS

Clearly, the very simple turbulence model utilized can adequately reproduce the
centerline velocity at regions close to the channel inlet and as the fully developed region is
approached. However, it leads to an underestimation in the region of the boundary layers
interaction, since it does not introduce any empirical correction within this region, such as
proposed by Cebeci and Smith (1974) and employed in Pimentel and Cotta (1998). For this
reason, the non-asymptotic behavior of the centerline longitudinal velocity, as expected from
the experimental observations, is not appropriately reproduced through the present algebraic
model. Nevertheless, the overall behavior of the turbulent flow is reasonably well simulated
and most important, in light of the global error control capability of the present approach, a
set of reference results is offered in this work based on a rather simple turbulence modelling
that can be easily implemented in any other numerical scheme, for validation purposes.
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